Existence of solutions for quasilinear degenerate elliptic equations
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form $A(u)+g(x,u,\nabla u)=h$, where $A$ is a Leray-Lions operator from $W_0^{1,p}(\Omega,w)$ to its dual. On the nonlinear term $g(x,s,\xi)$, we assume growth conditions on $\xi$, not on $s$, and a sign condition on $s$.
Classification : 35J15, 35J20, 35J70
Keywords: weighted Sobolev spaces, Hardy inequality, quasilinear degenerate elliptic operators
@article{EJDE_2001__2001__a31,
     author = {Akdim, Y. and Azroul, E. and Benkirane, A.},
     title = {Existence of solutions for quasilinear degenerate elliptic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a31/}
}
TY  - JOUR
AU  - Akdim, Y.
AU  - Azroul, E.
AU  - Benkirane, A.
TI  - Existence of solutions for quasilinear degenerate elliptic equations
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a31/
LA  - en
ID  - EJDE_2001__2001__a31
ER  - 
%0 Journal Article
%A Akdim, Y.
%A Azroul, E.
%A Benkirane, A.
%T Existence of solutions for quasilinear degenerate elliptic equations
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a31/
%G en
%F EJDE_2001__2001__a31
Akdim, Y.; Azroul, E.; Benkirane, A. Existence of solutions for quasilinear degenerate elliptic equations. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a31/