A unique continuation property for linear elliptic systems and nonresonance problems
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The aim of this paper is to study the existence of solutions for a quasilinear elliptic system where the nonlinear term is a Caratheodory function on a bounded domain of $\mathbb{R}^N$, by proving the well known unique continuation property for elliptic system in all dimensions: 1, 2, 3,$ \dots $and the strict monotonocity of eigensurfaces. These properties let us to consider the above problem as a nonresonance problem.
Classification : 35J05, 35J45, 35J65
Keywords: unique continuation, eigensurfaces, nonresonance problem
@article{EJDE_2001__2001__a27,
     author = {Anane, A. and Chakrone, O. and El Allali, Z. and Hadi, I.},
     title = {A unique continuation property for linear elliptic systems and nonresonance problems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a27/}
}
TY  - JOUR
AU  - Anane, A.
AU  - Chakrone, O.
AU  - El Allali, Z.
AU  - Hadi, I.
TI  - A unique continuation property for linear elliptic systems and nonresonance problems
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a27/
LA  - en
ID  - EJDE_2001__2001__a27
ER  - 
%0 Journal Article
%A Anane, A.
%A Chakrone, O.
%A El Allali, Z.
%A Hadi, I.
%T A unique continuation property for linear elliptic systems and nonresonance problems
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a27/
%G en
%F EJDE_2001__2001__a27
Anane, A.; Chakrone, O.; El Allali, Z.; Hadi, I. A unique continuation property for linear elliptic systems and nonresonance problems. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a27/