Orders of solutions of an $n$-th order linear differential equation with entire coefficients
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the solutions of the differential equation $$ f^{(n)}+A_{n-1}(z) f^{(n-1) }+\dots+A_{1}(z)f'+A_{0}(z) f=0, $$ where the coefficients are entire functions. We find conditions on the coefficients so that every solution that is not identically zero has infinite order.
Classification : 30D35, 34M10, 34C10, 34C11
Keywords: linear differential equations, entire functions, order of growth
@article{EJDE_2001__2001__a228,
     author = {Bela{\"\i}de, Benharrat and Hamouda, Saada},
     title = {Orders of solutions of an $n$-th order linear differential equation with entire coefficients},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a228/}
}
TY  - JOUR
AU  - Belaïde, Benharrat
AU  - Hamouda, Saada
TI  - Orders of solutions of an $n$-th order linear differential equation with entire coefficients
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a228/
LA  - en
ID  - EJDE_2001__2001__a228
ER  - 
%0 Journal Article
%A Belaïde, Benharrat
%A Hamouda, Saada
%T Orders of solutions of an $n$-th order linear differential equation with entire coefficients
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a228/
%G en
%F EJDE_2001__2001__a228
Belaïde, Benharrat; Hamouda, Saada. Orders of solutions of an $n$-th order linear differential equation with entire coefficients. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a228/