Uniform exponential stability of linear periodic systems in a Banach space
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article is devoted to the study of linear periodic dynamical systems, possessing the property of uniform exponential stability. It is proved that if the Cauchy operator of these systems possesses a certain compactness property, then the asymptotic stability implies the uniform exponential stability. We also show applications to different classes of linear evolution equations, such as ordinary linear differential equations in the space of Banach, retarded and neutral functional differential equations, some classes of evolution partial differential equations.
Classification : 34C35, 34C27, 34K15, 34K20, 58F27
Keywords: non-autonomous linear dynamical systems, global attractors, periodic systems, exponential stability, asymptotically compact systems, equations on Banach spaces
@article{EJDE_2001__2001__a211,
     author = {Cheban, D.N.},
     title = {Uniform exponential stability of linear periodic systems in a {Banach} space},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a211/}
}
TY  - JOUR
AU  - Cheban, D.N.
TI  - Uniform exponential stability of linear periodic systems in a Banach space
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a211/
LA  - en
ID  - EJDE_2001__2001__a211
ER  - 
%0 Journal Article
%A Cheban, D.N.
%T Uniform exponential stability of linear periodic systems in a Banach space
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a211/
%G en
%F EJDE_2001__2001__a211
Cheban, D.N. Uniform exponential stability of linear periodic systems in a Banach space. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a211/