Interfering solutions of a nonhomogeneous Hamiltonian system
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A Hamiltonian system is studied which has a term approaching a constant at an exponential rate at infinity . A minimax argument is used to show that the equation has a positive homoclinic solution. The proof employs the interaction between translated solutions of the corresponding homogeneous equation. What distinguishes this result from its few predecessors is that the equation has a nonhomogeneous nonlinearity.
Classification : 35A15
Keywords: variational methods, minimax argument, nonhomogeneous linearity, Hamiltonian system, Nehari manifold
@article{EJDE_2001__2001__a181,
     author = {Spradlin, Gregory S.},
     title = {Interfering solutions of a nonhomogeneous {Hamiltonian} system},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a181/}
}
TY  - JOUR
AU  - Spradlin, Gregory S.
TI  - Interfering solutions of a nonhomogeneous Hamiltonian system
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a181/
LA  - en
ID  - EJDE_2001__2001__a181
ER  - 
%0 Journal Article
%A Spradlin, Gregory S.
%T Interfering solutions of a nonhomogeneous Hamiltonian system
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a181/
%G en
%F EJDE_2001__2001__a181
Spradlin, Gregory S. Interfering solutions of a nonhomogeneous Hamiltonian system. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a181/