A priori estimates for global solutions and multiple equilibria of a superlinear parabolic problem involving measures
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a noncoercive elliptic problem in a bounded domain with a power nonlinearity and measure data. It is known that the problem possesses a stable solution and we prove existence of three further solutions. The proof is based on uniform bounds of global solutions of the corresponding parabolic problem and on a topological degree argument.
Classification : 35B45, 35J65, 35K60
Keywords: superlinear parabolic equation, semilinear elliptic equation, multiplicity, singular solutions
@article{EJDE_2001__2001__a179,
     author = {Quittner, Pavol},
     title = {A priori estimates for global solutions and multiple equilibria of a superlinear parabolic problem involving measures},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a179/}
}
TY  - JOUR
AU  - Quittner, Pavol
TI  - A priori estimates for global solutions and multiple equilibria of a superlinear parabolic problem involving measures
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a179/
LA  - en
ID  - EJDE_2001__2001__a179
ER  - 
%0 Journal Article
%A Quittner, Pavol
%T A priori estimates for global solutions and multiple equilibria of a superlinear parabolic problem involving measures
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a179/
%G en
%F EJDE_2001__2001__a179
Quittner, Pavol. A priori estimates for global solutions and multiple equilibria of a superlinear parabolic problem involving measures. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a179/