Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The existence of positive solutions of a nonlocal boundary value problem for a second order differential equation is investigated. By assuming that the response function is quiet at zero, in a sense introduced here, and it satisfies some easy conditions, existence results for a countable set of positive solutions are given.
Classification : 34B18
Keywords: multiple positive solutions, nonlocal boundary value problems, functions quiet at zero, Krasnoselskii's fixed point theorem
@article{EJDE_2001__2001__a14,
     author = {Karakostas, G.L. and Tsamatos, P.Ch.},
     title = {Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a14/}
}
TY  - JOUR
AU  - Karakostas, G.L.
AU  - Tsamatos, P.Ch.
TI  - Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a14/
LA  - en
ID  - EJDE_2001__2001__a14
ER  - 
%0 Journal Article
%A Karakostas, G.L.
%A Tsamatos, P.Ch.
%T Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a14/
%G en
%F EJDE_2001__2001__a14
Karakostas, G.L.; Tsamatos, P.Ch. Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a14/