Note on the uniqueness of a global positive solution to the second Painlevé equation
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The purpose of this note is to study the uniqueness of solutions to $ u'' -u^3 + (t-c)u = 0$, for $ t \in (0,+\infty)$ with Neumann condition at 0. Assuming a certain conditon at infinity, Helfer and Weissler [6] have found a unique solution. We show that, without any assumptions at infinity, this problem has exactly one global positive solution. Moreover, the solution behaves like $\sqrt{t}$ as $t$ approaches infinity.
Classification : 34B15, 35B05, 82D55
Keywords: second Painlevé equation, Neumann condition, global existence
@article{EJDE_2001__2001__a13,
     author = {Guedda, Mohammed},
     title = {Note on the uniqueness of a global positive solution to the second {Painlev\'e} equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a13/}
}
TY  - JOUR
AU  - Guedda, Mohammed
TI  - Note on the uniqueness of a global positive solution to the second Painlevé equation
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a13/
LA  - en
ID  - EJDE_2001__2001__a13
ER  - 
%0 Journal Article
%A Guedda, Mohammed
%T Note on the uniqueness of a global positive solution to the second Painlevé equation
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a13/
%G en
%F EJDE_2001__2001__a13
Guedda, Mohammed. Note on the uniqueness of a global positive solution to the second Painlevé equation. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a13/