Asymptotic behavior of the solutions to a class of second-order differential systems
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In the present paper it is proved that for any solution $x_1(t)$ of the system $M \ddot x + \dot x = f(t,x)$, for which $\lim\limits_{t\to\infty}\|\dot x_1(t)\|=0$, there exists a solution $x_2(t)$ of the system $\dot x = f(t,x)$ such that $\lim\limits_{t\to\infty}\|x_1(t)-x_2(t)\|=0$. Some generalizations of this result are also presented. The case $f(t,x)=-\nabla U(x)$ has been investigated explicitly.
Classification : 34D05, 34D10, 34E05
Keywords: asymptotic behaviour, gradient systems, T. wazewski's theorem
@article{EJDE_2001__2001__a123,
     author = {Nenov, Svetoslav Ivanov},
     title = {Asymptotic behavior of the solutions to a class of second-order differential systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a123/}
}
TY  - JOUR
AU  - Nenov, Svetoslav Ivanov
TI  - Asymptotic behavior of the solutions to a class of second-order differential systems
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a123/
LA  - en
ID  - EJDE_2001__2001__a123
ER  - 
%0 Journal Article
%A Nenov, Svetoslav Ivanov
%T Asymptotic behavior of the solutions to a class of second-order differential systems
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a123/
%G en
%F EJDE_2001__2001__a123
Nenov, Svetoslav Ivanov. Asymptotic behavior of the solutions to a class of second-order differential systems. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a123/