A generalization of the Landesman-Lazer condition
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we prove the existence of solutions to the semi-linear problem $$ \displaylines{ u''(x)+m^2 u(x)+g(x,u(x))=f(x)\cr u(0)=u(\pi)=0 }$$ at resonance. We assume a Landesman-Lazer type condition and use a variational method based on the Saddle Point Theorem.
Classification : 35J70, 35P30, 47H15
Keywords: resonance, eigenvalue, landesman-lazer condition
@article{EJDE_2001__2001__a11,
     author = {Tomiczek, Petr},
     title = {A generalization of the {Landesman-Lazer} condition},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a11/}
}
TY  - JOUR
AU  - Tomiczek, Petr
TI  - A generalization of the Landesman-Lazer condition
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a11/
LA  - en
ID  - EJDE_2001__2001__a11
ER  - 
%0 Journal Article
%A Tomiczek, Petr
%T A generalization of the Landesman-Lazer condition
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a11/
%G en
%F EJDE_2001__2001__a11
Tomiczek, Petr. A generalization of the Landesman-Lazer condition. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a11/