An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We present an elementary proof of the Harnack inequality for non-negative viscosity supersolutions of $\Delta_{\infty}u=0$. This was originally proven by Lindqvist and Manfredi using sequences of solutions of the p-Laplacian. We work directly with the $\Delta_{\infty}$ operator using the distance function as a test function. We also provide simple proofs of the Liouville property, Hopf boundary point lemma and Lipschitz continuity.
Classification : 35J70, 26A16
Keywords: viscosity solutions, Harnack inequality, infinite harmonic operator, distance function
@article{EJDE_2001__2001__a104,
     author = {Bhattacharya, Tilak},
     title = {An elementary proof of the {Harnack} inequality for non-negative infinity-superharmonic functions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a104/}
}
TY  - JOUR
AU  - Bhattacharya, Tilak
TI  - An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a104/
LA  - en
ID  - EJDE_2001__2001__a104
ER  - 
%0 Journal Article
%A Bhattacharya, Tilak
%T An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a104/
%G en
%F EJDE_2001__2001__a104
Bhattacharya, Tilak. An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a104/