Periodic solutions for a class of non-coercive Hamiltonian systems
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove the existence of non-constant T-periodic orbits of the Hamiltonian system $\dot q =H_p (t, p(t), q(t))\dot p =-H_q (t, p(t), q(t))$, where H is a T-periodic function in t, non-convex and non-coercive in (p,q), and has the form $H(t,p,q)\sim |q|^{\alpha}(|p|^{\beta}-1)$ with .
Classification : 34C25, 37J45
Keywords: Hamiltonian systems, non-coercive, periodic solutions, minimax argument
@article{EJDE_2001__2001__a1,
     author = {Boughariou, Morched},
     title = {Periodic solutions for a class of non-coercive {Hamiltonian} systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a1/}
}
TY  - JOUR
AU  - Boughariou, Morched
TI  - Periodic solutions for a class of non-coercive Hamiltonian systems
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a1/
LA  - en
ID  - EJDE_2001__2001__a1
ER  - 
%0 Journal Article
%A Boughariou, Morched
%T Periodic solutions for a class of non-coercive Hamiltonian systems
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a1/
%G en
%F EJDE_2001__2001__a1
Boughariou, Morched. Periodic solutions for a class of non-coercive Hamiltonian systems. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a1/