Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities
Electronic Journal of Differential Equations, Tome 2000 (2000).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the boundary-value problem $-(\varphi_p (u'))' =\lambda f(u)$ in (0,1) $u(0) = u(1) =0$ where p> 1, $\lambda$ and $\varphi_p (x) =| x|^{p-2}x$. The nonlinearity $f$ is cubic-like with three distinct roots 0=a b c. By means of a quadrature method, we provide the exact number of solutions for all $\lambda$. This way we extend a recent result, for $p=2$, by Korman et al. [17] to the general case $p>1$. We shall prove that when $\1$p=$2 by Korman et al. [17], and strictly different in the case $p>2$.$
Classification : 34B15
Keywords: one dimensional p-Laplacian, multiplicity results, time-maps
@article{EJDE_2000__2000__a81,
     author = {Addou, Idris},
     title = {Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2000},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a81/}
}
TY  - JOUR
AU  - Addou, Idris
TI  - Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities
JO  - Electronic Journal of Differential Equations
PY  - 2000
VL  - 2000
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a81/
LA  - en
ID  - EJDE_2000__2000__a81
ER  - 
%0 Journal Article
%A Addou, Idris
%T Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities
%J Electronic Journal of Differential Equations
%D 2000
%V 2000
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a81/
%G en
%F EJDE_2000__2000__a81
Addou, Idris. Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities. Electronic Journal of Differential Equations, Tome 2000 (2000). http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a81/