Regular oblique derivative problem in Morrey spaces
Electronic Journal of Differential Equations, Tome 2000 (2000).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article presents a study of the regular oblique derivative problem $$ \displaylines{ \sum_{i,j=1}^n a^{ij}(x) \frac{\partial^2 u }{\partial x_i\partial x_j} =f(x) \cr \frac{\partial u }{\partial \ell(x)}+ \sigma(x) u = \varphi(x)\,. }$$ Assuming that the coefficients $a^{ij}$ belong to the Sarason's class of functions with vanishing mean oscillation, we show existence and global regularity of strong solutions in Morrey spaces.
Classification : 35J25, 35B65, 35R05
Keywords: uniformly elliptic operator, regular oblique derivative problem, Morrey spaces
@article{EJDE_2000__2000__a78,
     author = {Palagachev, Dian K. and Ragusa, Maria Alessandra and Softova, Lubomira G.},
     title = {Regular oblique derivative problem in {Morrey} spaces},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2000},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a78/}
}
TY  - JOUR
AU  - Palagachev, Dian K.
AU  - Ragusa, Maria Alessandra
AU  - Softova, Lubomira G.
TI  - Regular oblique derivative problem in Morrey spaces
JO  - Electronic Journal of Differential Equations
PY  - 2000
VL  - 2000
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a78/
LA  - en
ID  - EJDE_2000__2000__a78
ER  - 
%0 Journal Article
%A Palagachev, Dian K.
%A Ragusa, Maria Alessandra
%A Softova, Lubomira G.
%T Regular oblique derivative problem in Morrey spaces
%J Electronic Journal of Differential Equations
%D 2000
%V 2000
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a78/
%G en
%F EJDE_2000__2000__a78
Palagachev, Dian K.; Ragusa, Maria Alessandra; Softova, Lubomira G. Regular oblique derivative problem in Morrey spaces. Electronic Journal of Differential Equations, Tome 2000 (2000). http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a78/