Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative
Electronic Journal of Differential Equations, Tome 2000 (2000).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We present sufficient conditions for the existence of solutions to Neumann and periodic boundary-value problems for some class of quasilinear ordinary differential equations. We also show that this condition is necessary for certain nonlinearities. Our results involve the p-Laplacian, the mean-curvature operator and nonlinearities blowing up.
Classification : 34B15, 47H12
Keywords: p-Laplacian, Leray-Schauder degree, landesmann-lazer condition
@article{EJDE_2000__2000__a164,
     author = {Girg, Petr},
     title = {Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2000},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a164/}
}
TY  - JOUR
AU  - Girg, Petr
TI  - Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative
JO  - Electronic Journal of Differential Equations
PY  - 2000
VL  - 2000
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a164/
LA  - en
ID  - EJDE_2000__2000__a164
ER  - 
%0 Journal Article
%A Girg, Petr
%T Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative
%J Electronic Journal of Differential Equations
%D 2000
%V 2000
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a164/
%G en
%F EJDE_2000__2000__a164
Girg, Petr. Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative. Electronic Journal of Differential Equations, Tome 2000 (2000). http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a164/