A singular ODE related to quasilinear elliptic equations
Electronic Journal of Differential Equations, Tome 2000 (2000).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a quasilinear elliptic problem with the natural growth in the gradient. Existence, non-existence, uniqueness, and qualitative properties of positive solutions are obtained. We consider both weak and strong solutions. All results are based on the study of a suitable singular ODE of the first order. We also introduce a comparison principle for a class of nonlinear integral operators of Volterra type that enables to obtain uniqueness of weak solutions of the quasilinear equation.
Classification : 35J60, 35B65, 34C10
Keywords: p-Laplacian, spherically symmetric, existence, non-existence, uniqueness, comparison principle, singular ODE, regularity
@article{EJDE_2000__2000__a156,
     author = {Korkut, Luka and Pa\v{s}i\'c, Mervan and \v{Z}ubrini\'c},
     title = {A singular {ODE} related to quasilinear elliptic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2000},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a156/}
}
TY  - JOUR
AU  - Korkut, Luka
AU  - Pašić, Mervan
AU  - Žubrinić
TI  - A singular ODE related to quasilinear elliptic equations
JO  - Electronic Journal of Differential Equations
PY  - 2000
VL  - 2000
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a156/
LA  - en
ID  - EJDE_2000__2000__a156
ER  - 
%0 Journal Article
%A Korkut, Luka
%A Pašić, Mervan
%A Žubrinić
%T A singular ODE related to quasilinear elliptic equations
%J Electronic Journal of Differential Equations
%D 2000
%V 2000
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a156/
%G en
%F EJDE_2000__2000__a156
Korkut, Luka; Pašić, Mervan; Žubrinić. A singular ODE related to quasilinear elliptic equations. Electronic Journal of Differential Equations, Tome 2000 (2000). http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a156/