Stochastic perturbation of the Allen-Cahn equation
Electronic Journal of Differential Equations, Tome 2000 (2000).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Consider the Allen-Cahn equation with small diffusion $\epsilon^2$ perturbed by a space time white noise of intensity $\sigma$. In the limit, $\sigma / \epsilon^2 \rightarrow 0$, solutions converge to the noise free problem in the $L_2$ norm. Under these conditions, asymptotic results for the evolution of phase boundaries in the deterministic setting are extended, to describe the behaviour of the stochastic Allen-Cahn PDE by a system of stochastic differential equations. Computations are described, which support the asymptotic derivation.
Classification : 60H15, 74N20, 45M05
Keywords: dynamics of phase-boundaries, stochastic partial differential equations, asymptotics
@article{EJDE_2000__2000__a136,
     author = {Shardlow, Tony},
     title = {Stochastic perturbation of the {Allen-Cahn} equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2000},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a136/}
}
TY  - JOUR
AU  - Shardlow, Tony
TI  - Stochastic perturbation of the Allen-Cahn equation
JO  - Electronic Journal of Differential Equations
PY  - 2000
VL  - 2000
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a136/
LA  - en
ID  - EJDE_2000__2000__a136
ER  - 
%0 Journal Article
%A Shardlow, Tony
%T Stochastic perturbation of the Allen-Cahn equation
%J Electronic Journal of Differential Equations
%D 2000
%V 2000
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a136/
%G en
%F EJDE_2000__2000__a136
Shardlow, Tony. Stochastic perturbation of the Allen-Cahn equation. Electronic Journal of Differential Equations, Tome 2000 (2000). http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a136/