Cesaro asymptotic equipartition of energy in the coupled case
Electronic Journal of Differential Equations, Tome 2000 (2000).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is well known from earlier results that certain types of selfadjoint operators, e.g. operators allowing a representation as operator matrices, show equipartition of energy. In this paper we examine the question whether there are more selfadjoint operators showing equipartition of energy in the Cesaro mean. For this purpose we proof a necessary and sufficient criterion for equipartition of energy and use this criterion to show equipartition for a system of partial differential equations with a coupled boundary condition.
Classification : 36G10, 47B25, 47D03, 34D05
Keywords: Cesàro asymptotic equipartition of energy, selfadjoint operator matrices, direct sum Hilbert space, evolution equations, initial boundary value problem, coupled boundary condition
@article{EJDE_2000__2000__a130,
     author = {Boller, Stefan},
     title = {Cesaro asymptotic equipartition of energy in the coupled case},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2000},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a130/}
}
TY  - JOUR
AU  - Boller, Stefan
TI  - Cesaro asymptotic equipartition of energy in the coupled case
JO  - Electronic Journal of Differential Equations
PY  - 2000
VL  - 2000
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a130/
LA  - en
ID  - EJDE_2000__2000__a130
ER  - 
%0 Journal Article
%A Boller, Stefan
%T Cesaro asymptotic equipartition of energy in the coupled case
%J Electronic Journal of Differential Equations
%D 2000
%V 2000
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a130/
%G en
%F EJDE_2000__2000__a130
Boller, Stefan. Cesaro asymptotic equipartition of energy in the coupled case. Electronic Journal of Differential Equations, Tome 2000 (2000). http://geodesic.mathdoc.fr/item/EJDE_2000__2000__a130/