Persistence of invariant manifolds for perturbations of semiflows with symmetry
Electronic Journal of Differential Equations, Tome 1999 (1999).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Consider a semiflow in a Banach space, which is invariant under the action of a compact Lie group. Any equilibrium generates a manifold of equilibria under the action of the group. We prove that, if the manifold of equilibria is normally hyperbolic, an invariant manifold persists in the neighborhood under any small perturbation which may break the symmetry. The Liapunov-Perron approach of integral equations is used.
Classification : 58F15, 58F35, 58G30, 58G35, 34C35
Keywords: semiflow, invariant manifold, symmetry
@article{EJDE_1999__1999__a77,
     author = {Zeng, Chongchun},
     title = {Persistence of invariant manifolds for perturbations of semiflows with symmetry},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1999},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a77/}
}
TY  - JOUR
AU  - Zeng, Chongchun
TI  - Persistence of invariant manifolds for perturbations of semiflows with symmetry
JO  - Electronic Journal of Differential Equations
PY  - 1999
VL  - 1999
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a77/
LA  - en
ID  - EJDE_1999__1999__a77
ER  - 
%0 Journal Article
%A Zeng, Chongchun
%T Persistence of invariant manifolds for perturbations of semiflows with symmetry
%J Electronic Journal of Differential Equations
%D 1999
%V 1999
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a77/
%G en
%F EJDE_1999__1999__a77
Zeng, Chongchun. Persistence of invariant manifolds for perturbations of semiflows with symmetry. Electronic Journal of Differential Equations, Tome 1999 (1999). http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a77/