Solutions to elliptic systems of Hamiltonian type in $\bbfR^N$
Electronic Journal of Differential Equations, Tome 1999 (1999).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The paper proves existence of a solution for elliptic systems of Hamiltonian type on ${\Bbb R}^N$ by a variational method. We use the Benci-Rabinowitz technique, which cannot be applied here directly for lack of compactness. However, a concentration compactness technique allows us to construct a finite-dimensional pseudogradient that restores the Benci-Rabinowitz method to power also for problems on unbounded domains.
Classification : 35J50
Keywords: cocentration compactness, elliptic systems, pseudogradient
@article{EJDE_1999__1999__a7,
     author = {Tintarev, K.},
     title = {Solutions to elliptic systems of {Hamiltonian} type in $\bbfR^N$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1999},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a7/}
}
TY  - JOUR
AU  - Tintarev, K.
TI  - Solutions to elliptic systems of Hamiltonian type in $\bbfR^N$
JO  - Electronic Journal of Differential Equations
PY  - 1999
VL  - 1999
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a7/
LA  - en
ID  - EJDE_1999__1999__a7
ER  - 
%0 Journal Article
%A Tintarev, K.
%T Solutions to elliptic systems of Hamiltonian type in $\bbfR^N$
%J Electronic Journal of Differential Equations
%D 1999
%V 1999
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a7/
%G en
%F EJDE_1999__1999__a7
Tintarev, K. Solutions to elliptic systems of Hamiltonian type in $\bbfR^N$. Electronic Journal of Differential Equations, Tome 1999 (1999). http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a7/