Antimaximum principle for elliptic problems with weight
Electronic Journal of Differential Equations, Tome 1999 (1999).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper is concerned with the antimaximum principle for the linear problem with weight $-\Delta u = \lambda m(x)+h(x)$ under Dirichlet or Neumann boundary conditions. We investigate the following three questions: Where exactly can this principle hold? If it holds, does it hold uniformly or not? If it holds uniformly, what is the exact interval of uniformity? We will in particular obtain a variational characterization of this interval of uniformity.
Classification : 35J20, 35P05
Keywords: antimaximum principle, indefinite weight, Fucik spectrum
@article{EJDE_1999__1999__a68,
     author = {Godoy, T. and Gossez, J.-P. and Paczka, S.},
     title = {Antimaximum principle for elliptic problems with weight},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1999},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a68/}
}
TY  - JOUR
AU  - Godoy, T.
AU  - Gossez, J.-P.
AU  - Paczka, S.
TI  - Antimaximum principle for elliptic problems with weight
JO  - Electronic Journal of Differential Equations
PY  - 1999
VL  - 1999
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a68/
LA  - en
ID  - EJDE_1999__1999__a68
ER  - 
%0 Journal Article
%A Godoy, T.
%A Gossez, J.-P.
%A Paczka, S.
%T Antimaximum principle for elliptic problems with weight
%J Electronic Journal of Differential Equations
%D 1999
%V 1999
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a68/
%G en
%F EJDE_1999__1999__a68
Godoy, T.; Gossez, J.-P.; Paczka, S. Antimaximum principle for elliptic problems with weight. Electronic Journal of Differential Equations, Tome 1999 (1999). http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a68/