Partial regularity for flows of $H$-surfaces. II
Electronic Journal of Differential Equations, Tome 1999 (1999), pp. 1-8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the regularity of weak solutions to the heat equation for H-surfaces. Under the assumption that the function $H:{\Bbb R}^3 \to {\Bbb R}$ is bounded and Lipschitz, we show that the solution is $C^{2,\alpha}$ on its domain, except for a set of measure zero.
Classification : 35B65, 35K65
Keywords: H-surfaces, Lorentz space, Hardy space
@article{EJDE_1999__1999__a3,
     author = {Wang, Changyou},
     title = {Partial regularity for flows of $H$-surfaces. {II}},
     journal = {Electronic Journal of Differential Equations},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {1999},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a3/}
}
TY  - JOUR
AU  - Wang, Changyou
TI  - Partial regularity for flows of $H$-surfaces. II
JO  - Electronic Journal of Differential Equations
PY  - 1999
SP  - 1
EP  - 8
VL  - 1999
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a3/
LA  - en
ID  - EJDE_1999__1999__a3
ER  - 
%0 Journal Article
%A Wang, Changyou
%T Partial regularity for flows of $H$-surfaces. II
%J Electronic Journal of Differential Equations
%D 1999
%P 1-8
%V 1999
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a3/
%G en
%F EJDE_1999__1999__a3
Wang, Changyou. Partial regularity for flows of $H$-surfaces. II. Electronic Journal of Differential Equations, Tome 1999 (1999), pp. 1-8. http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a3/