$C^{\infty}$ interfaces of solutions for one-dimensional parabolic $p$-Laplacian equations
Electronic Journal of Differential Equations, Tome 1999 (1999).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the regularity of a moving interface $x = \zeta (t)$ of the solutions for the initial value problem $u_t = \left(|u_x|^{p-2}u_x \right)_xu(x,0) =u_0 (x)$, where $u_0\in L^1({\Bbb R})$ and $p greater than 2$. We prove that each side of the moving interface is $C^{\infty}$.
Classification : 35K65
Keywords: p-Laplacian, free boundary
@article{EJDE_1999__1999__a100,
     author = {Ham, Yoonmi and Ko, Youngsang},
     title = {$C^{\infty}$ interfaces of solutions for one-dimensional parabolic $p${-Laplacian} equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1999},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a100/}
}
TY  - JOUR
AU  - Ham, Yoonmi
AU  - Ko, Youngsang
TI  - $C^{\infty}$ interfaces of solutions for one-dimensional parabolic $p$-Laplacian equations
JO  - Electronic Journal of Differential Equations
PY  - 1999
VL  - 1999
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a100/
LA  - en
ID  - EJDE_1999__1999__a100
ER  - 
%0 Journal Article
%A Ham, Yoonmi
%A Ko, Youngsang
%T $C^{\infty}$ interfaces of solutions for one-dimensional parabolic $p$-Laplacian equations
%J Electronic Journal of Differential Equations
%D 1999
%V 1999
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a100/
%G en
%F EJDE_1999__1999__a100
Ham, Yoonmi; Ko, Youngsang. $C^{\infty}$ interfaces of solutions for one-dimensional parabolic $p$-Laplacian equations. Electronic Journal of Differential Equations, Tome 1999 (1999). http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a100/