Removeable singular sets of fully nonlinear elliptic equations
Electronic Journal of Differential Equations, Tome 1999 (1999).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we consider fully nonlinear elliptic equations, including the Monge-Ampere equation and the Weingarden equation. We assume that $F(D^2u, x) = f(x) \quad x \in \Omega\,,u(x) = g(x) \quad x\in \partial \Omega $ has a solution u in $C^2(\Omega) \cap C(\bar {\Omega} )$, and $F(D^2v(x), x) = f(x) \quad x\in \Omega\setminus S\,,v(x)= g(x)\quad x\in \partial \Omega $ has a solution v in $C^2(\Omega\setminus S ) \cap \hbox{Lip}(\Omega) \cap C(\bar {\Omega})$. We prove that under certain conditions on S and v, the singular set S is removable; i.e., u=v.
Classification : 35B65
Keywords: nonlinear PDE, Monge-Ampère equation, removable singularity
@article{EJDE_1999__1999__a0,
     author = {Wang, Lihe and Zhu, Ning},
     title = {Removeable singular sets of fully nonlinear elliptic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1999},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a0/}
}
TY  - JOUR
AU  - Wang, Lihe
AU  - Zhu, Ning
TI  - Removeable singular sets of fully nonlinear elliptic equations
JO  - Electronic Journal of Differential Equations
PY  - 1999
VL  - 1999
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a0/
LA  - en
ID  - EJDE_1999__1999__a0
ER  - 
%0 Journal Article
%A Wang, Lihe
%A Zhu, Ning
%T Removeable singular sets of fully nonlinear elliptic equations
%J Electronic Journal of Differential Equations
%D 1999
%V 1999
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a0/
%G en
%F EJDE_1999__1999__a0
Wang, Lihe; Zhu, Ning. Removeable singular sets of fully nonlinear elliptic equations. Electronic Journal of Differential Equations, Tome 1999 (1999). http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a0/