Invariance of Poincaré-Lyapunov polynomials under the group of rotations
Electronic Journal of Differential Equations, Tome 1998 (1998).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the Poincare-Lyapunov polynomials at a focus of a family of real polynomial vector fields of degree $n$ on the plane are invariant under the group of rotations. Furthermore, we show that under the multiplicative group ${\Bbb C}^*=\{\rho {\rm e}^{i\psi}\}$, they are invariant up to a positive factor. These results follow from the weighted-homogeneity of the polynomials that we define in the text.
Classification : 58F14, 58F21, 58F35, 34C25
Keywords: focus, invariance of Poincarè-Lyapunov polynomials, weighted-homogeneity
@article{EJDE_1998__1998__a4,
     author = {Joyal, Pierre},
     title = {Invariance of {Poincar\'e-Lyapunov} polynomials under the group of rotations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1998},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a4/}
}
TY  - JOUR
AU  - Joyal, Pierre
TI  - Invariance of Poincaré-Lyapunov polynomials under the group of rotations
JO  - Electronic Journal of Differential Equations
PY  - 1998
VL  - 1998
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a4/
LA  - en
ID  - EJDE_1998__1998__a4
ER  - 
%0 Journal Article
%A Joyal, Pierre
%T Invariance of Poincaré-Lyapunov polynomials under the group of rotations
%J Electronic Journal of Differential Equations
%D 1998
%V 1998
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a4/
%G en
%F EJDE_1998__1998__a4
Joyal, Pierre. Invariance of Poincaré-Lyapunov polynomials under the group of rotations. Electronic Journal of Differential Equations, Tome 1998 (1998). http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a4/