Pressure conditions for the local regularity of solutions of the Navier-Stokes equations
Electronic Journal of Differential Equations, Tome 1998 (1998).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We obtain a relationship between the integrability of the pressure gradient and the the integrability of the velocity for local solutions of the Navier--Stokes equations with finite energy. In particular, we show that if the pressure gradient is sufficiently integrable, then the corresponding velocity is locally bounded and smooth in the spatial variables. The result is proven by using De Giorgi type estimates in $L^{\rm weak}_p$ spaces.
Classification : 35Q30, 76D05
Keywords: Navier-Stokes, regularity, pressure
@article{EJDE_1998__1998__a32,
     author = {O'Leary, Mike},
     title = {Pressure conditions for the local regularity of solutions of the {Navier-Stokes} equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1998},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a32/}
}
TY  - JOUR
AU  - O'Leary, Mike
TI  - Pressure conditions for the local regularity of solutions of the Navier-Stokes equations
JO  - Electronic Journal of Differential Equations
PY  - 1998
VL  - 1998
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a32/
LA  - en
ID  - EJDE_1998__1998__a32
ER  - 
%0 Journal Article
%A O'Leary, Mike
%T Pressure conditions for the local regularity of solutions of the Navier-Stokes equations
%J Electronic Journal of Differential Equations
%D 1998
%V 1998
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a32/
%G en
%F EJDE_1998__1998__a32
O'Leary, Mike. Pressure conditions for the local regularity of solutions of the Navier-Stokes equations. Electronic Journal of Differential Equations, Tome 1998 (1998). http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a32/