Symmetry and convexity of level sets of solutions to the infinity Laplace's equation
Electronic Journal of Differential Equations, Tome 1998 (1998).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the Dirichlet problem $-\Delta_\infty u=f(u)$ in $\Omega, u=0$ on $\partial\Omega$ where $\Delta_\infty u = u_{x_i}u_{x_j}u_{x_ix_j}$ and f is a nonnegative continuous function. We investigate whether the solutions to this equation inherit geometrical properties from the domain $\Omega$. We obtain results concerning convexity of level sets and symmetry of solutions.
Classification : 35J70, 35B05
Keywords: infinity-Laplace equation, p-Laplace equation
@article{EJDE_1998__1998__a31,
     author = {Rosset, Edi},
     title = {Symmetry and convexity of level sets of solutions to the infinity {Laplace's} equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1998},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a31/}
}
TY  - JOUR
AU  - Rosset, Edi
TI  - Symmetry and convexity of level sets of solutions to the infinity Laplace's equation
JO  - Electronic Journal of Differential Equations
PY  - 1998
VL  - 1998
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a31/
LA  - en
ID  - EJDE_1998__1998__a31
ER  - 
%0 Journal Article
%A Rosset, Edi
%T Symmetry and convexity of level sets of solutions to the infinity Laplace's equation
%J Electronic Journal of Differential Equations
%D 1998
%V 1998
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a31/
%G en
%F EJDE_1998__1998__a31
Rosset, Edi. Symmetry and convexity of level sets of solutions to the infinity Laplace's equation. Electronic Journal of Differential Equations, Tome 1998 (1998). http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a31/