Decay of solutions of a degenerate hyperbolic equation
Electronic Journal of Differential Equations, Tome 1998 (1998).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article studies the asymptotic behavior of solutions to the damped, non-linear wave equation $$ \ddot u +\gamma \dot u -m(\|\nabla u\|^2)\Delta u = f(x,t)\,, $$ which is known as degenerate if the greatest lower bound for $m$ is zero, and non-degenerate if the greatest lower bound is positive. For the non-degenerate case, it is already known that solutions decay exponentially, but for the degenerate case exponential decay has remained an open question. In an attempt to answer this question, we show that in general solutions can not decay with exponential order, but that $\|\dot u\|$ is square integrable on $[0, \infty)$. We extend our results to systems and to related equations.
Classification : 35L05, 35B40
Keywords: degenerate hyperbolic equation, asymptotic behavior
@article{EJDE_1998__1998__a24,
     author = {Dix, Julio G.},
     title = {Decay of solutions of a degenerate hyperbolic equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1998},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a24/}
}
TY  - JOUR
AU  - Dix, Julio G.
TI  - Decay of solutions of a degenerate hyperbolic equation
JO  - Electronic Journal of Differential Equations
PY  - 1998
VL  - 1998
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a24/
LA  - en
ID  - EJDE_1998__1998__a24
ER  - 
%0 Journal Article
%A Dix, Julio G.
%T Decay of solutions of a degenerate hyperbolic equation
%J Electronic Journal of Differential Equations
%D 1998
%V 1998
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a24/
%G en
%F EJDE_1998__1998__a24
Dix, Julio G. Decay of solutions of a degenerate hyperbolic equation. Electronic Journal of Differential Equations, Tome 1998 (1998). http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a24/