Exponentially slow traveling waves on a finite interval for Burger's type equation
Electronic Journal of Differential Equations, Tome 1998 (1998).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we study for small positive $$u_t=\epsilon u_{xx}+f(u) u_x, u(x,0)=u_0(x), u(\pm 1,t)=\pm 1$ (\star)$ on the bounded spatial domain [-1,1]; $f$ is a smooth function satisfying $\int_{-1}^{1}f(t)dt=0$. The initial and boundary value problem ($\star$) has a unique asymptotically stable equilibrium solution that attracts all solutions starting with continuous initial data $u_0$. On the infinite spatial domain ${\Bbb R}$ the differential equation has slow speed traveling wave solutions generated by profiles that satisfy the boundary conditions of ($\star$). As long as its zero stays inside the interval [-1,1], such a traveling wave suitably describes the slow long term behaviour of the solution of ($\star$) and its speed characterizes the local velocity of the slow motion with exponential precision. A solution that starts near a traveling wave moves in a small neighborhood of the traveling wave with exponentially slow velocity (measured as the speed of the unique zero) during an exponentially long time interval (0,T). In this paper we give a unified treatment of the problem, using both Hilbert space and maximum principle methods, and we give rigorous proofs of convergence of the solution and of the asymptotic estimate of the velocity.$$
Classification : 35B25, 35K60
Keywords: slow motion, singular perturbations, exponential precision, Burgers equation
@article{EJDE_1998__1998__a15,
     author = {de Groen, P.P.N. and Karadzhov, G.E.},
     title = {Exponentially slow traveling waves on a finite interval for {Burger's} type equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1998},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a15/}
}
TY  - JOUR
AU  - de Groen, P.P.N.
AU  - Karadzhov, G.E.
TI  - Exponentially slow traveling waves on a finite interval for Burger's type equation
JO  - Electronic Journal of Differential Equations
PY  - 1998
VL  - 1998
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a15/
LA  - en
ID  - EJDE_1998__1998__a15
ER  - 
%0 Journal Article
%A de Groen, P.P.N.
%A Karadzhov, G.E.
%T Exponentially slow traveling waves on a finite interval for Burger's type equation
%J Electronic Journal of Differential Equations
%D 1998
%V 1998
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a15/
%G en
%F EJDE_1998__1998__a15
de Groen, P.P.N.; Karadzhov, G.E. Exponentially slow traveling waves on a finite interval for Burger's type equation. Electronic Journal of Differential Equations, Tome 1998 (1998). http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a15/