On Neumann boundary value problems for some quasilinear elliptic equations
Electronic Journal of Differential Equations, Tome 1997 (1997).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the role played by the indefinite weight function $a(x)$ on the existence of positive solutions to the problem $$\left\{ \eqalign{ -{\rm div}\,(|\nabla u|^{p-2}\nabla u)\= \lambda a(x)|u|^{p-2}u+b(x)|u|^{\gamma-2}u, \quad x\in\Omega, \cr x{\partial u \over\partial n}\=0, \quad x\in\partial\Omega\,,} \right. $$ where $\Omega$ is a smooth bounded domain in $R^n$ , b changes sign, $1 less than p less than N , 1 less than \gamma less than Np/(N-p)$ and $\gamma\ne p$ . We prove that if $\int_\Omega a(x)\, dx\ne 0$ and b satisfies another integral condition, then there exists some $\lambda^*$ such that $\lambda^* \int_\Omega a(x)\, dx$ and, for $\lambda$ strictly between 0 and $\lambda^*$ , the problem has a positive solution. if $\int_\Omega a(x)\, dx=0$ , then the problem has a positive solution for small $\lambda$ provided that $\int_\Omega b(x)\,dx$ .
Classification : 35J65, 35J70, 35P30
Keywords: p-Laplacian, positive solutions, Neumann boundary value problems
@article{EJDE_1997__1997__a33,
     author = {Binding, Paul A. and Dr\'abek, Pavel and Huang, Yin Xi},
     title = {On {Neumann} boundary value problems for some quasilinear elliptic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1997},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a33/}
}
TY  - JOUR
AU  - Binding, Paul A.
AU  - Drábek, Pavel
AU  - Huang, Yin Xi
TI  - On Neumann boundary value problems for some quasilinear elliptic equations
JO  - Electronic Journal of Differential Equations
PY  - 1997
VL  - 1997
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a33/
LA  - en
ID  - EJDE_1997__1997__a33
ER  - 
%0 Journal Article
%A Binding, Paul A.
%A Drábek, Pavel
%A Huang, Yin Xi
%T On Neumann boundary value problems for some quasilinear elliptic equations
%J Electronic Journal of Differential Equations
%D 1997
%V 1997
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a33/
%G en
%F EJDE_1997__1997__a33
Binding, Paul A.; Drábek, Pavel; Huang, Yin Xi. On Neumann boundary value problems for some quasilinear elliptic equations. Electronic Journal of Differential Equations, Tome 1997 (1997). http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a33/