Partial regularity for flows of $H$-surfaces
Electronic Journal of Differential Equations, Tome 1997 (1997).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article studies regularity of weak solutions to the heat equation for H-surfaces. Under the assumption that the function $H$ is Lipschitz and depends only on the first two components, the solution has regularity on its domain, except for a set of measure zero. Moreover, if the solution satisfies certain energy inequality, this set is finite.
Classification : 35B65, 35K65
Keywords: H-surfaces, Hardy spaces, Lorentz spaces
@article{EJDE_1997__1997__a10,
     author = {Wang, Changyou},
     title = {Partial regularity for flows of $H$-surfaces},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1997},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a10/}
}
TY  - JOUR
AU  - Wang, Changyou
TI  - Partial regularity for flows of $H$-surfaces
JO  - Electronic Journal of Differential Equations
PY  - 1997
VL  - 1997
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a10/
LA  - en
ID  - EJDE_1997__1997__a10
ER  - 
%0 Journal Article
%A Wang, Changyou
%T Partial regularity for flows of $H$-surfaces
%J Electronic Journal of Differential Equations
%D 1997
%V 1997
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a10/
%G en
%F EJDE_1997__1997__a10
Wang, Changyou. Partial regularity for flows of $H$-surfaces. Electronic Journal of Differential Equations, Tome 1997 (1997). http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a10/