Sub-elliptic boundary value problems for quasilinear operators
Electronic Journal of Differential Equations, Tome 1997 (1997).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Classical solvability and uniqueness in the Holder space $C^{2+\alpha}(\overline{\Omega})$ is proved for the oblique derivative problem $\ell(x)=(\ell^1(x),\ldots,\ell^n(x))$ is tangential to the boundary $\partial \Omega$ at the points of some non-empty set $S\subset\partial \Omega$, and the nonlinear term $b(x,\,u,\,Du)$ grows quadratically with respect to the gradient $Du$.
Classification : 35J65, 35R25
Keywords: quasilinear elliptic operator, degenerate oblique derivative problem, sub-elliptic estimates
@article{EJDE_1997__1997__a0,
     author = {Palagachev, Dian K. and Popivanov, Peter R.},
     title = {Sub-elliptic boundary value problems for quasilinear operators},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1997},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a0/}
}
TY  - JOUR
AU  - Palagachev, Dian K.
AU  - Popivanov, Peter R.
TI  - Sub-elliptic boundary value problems for quasilinear operators
JO  - Electronic Journal of Differential Equations
PY  - 1997
VL  - 1997
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a0/
LA  - en
ID  - EJDE_1997__1997__a0
ER  - 
%0 Journal Article
%A Palagachev, Dian K.
%A Popivanov, Peter R.
%T Sub-elliptic boundary value problems for quasilinear operators
%J Electronic Journal of Differential Equations
%D 1997
%V 1997
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a0/
%G en
%F EJDE_1997__1997__a0
Palagachev, Dian K.; Popivanov, Peter R. Sub-elliptic boundary value problems for quasilinear operators. Electronic Journal of Differential Equations, Tome 1997 (1997). http://geodesic.mathdoc.fr/item/EJDE_1997__1997__a0/