A lower bound for the gradient of $\infty$-harmonic functions
Electronic Journal of Differential Equations, Tome 1996 (1996) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We establish a lower bound for the gradient of the solution to infinity-Laplace equation in a strongly star-shaped annulus with capacity type boundary conditions. The proof involves properties of the radial derivative of the solution, so that starshapedness of level sets easily follows.
Classification : 35J70, 35B05, 35B50, 31C45
Keywords: infinity-harmonic functions, p-harmonic functions
@article{EJDE_1996__1996_2_a0,
     author = {Rosset, Edi},
     title = {A lower bound for the gradient of $\infty$-harmonic functions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1996},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1996__1996_2_a0/}
}
TY  - JOUR
AU  - Rosset, Edi
TI  - A lower bound for the gradient of $\infty$-harmonic functions
JO  - Electronic Journal of Differential Equations
PY  - 1996
VL  - 1996
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1996__1996_2_a0/
LA  - en
ID  - EJDE_1996__1996_2_a0
ER  - 
%0 Journal Article
%A Rosset, Edi
%T A lower bound for the gradient of $\infty$-harmonic functions
%J Electronic Journal of Differential Equations
%D 1996
%V 1996
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1996__1996_2_a0/
%G en
%F EJDE_1996__1996_2_a0
Rosset, Edi. A lower bound for the gradient of $\infty$-harmonic functions. Electronic Journal of Differential Equations, Tome 1996 (1996) no. 2. http://geodesic.mathdoc.fr/item/EJDE_1996__1996_2_a0/