A Radó type theorem for $p$-harmonic functions in the plane
Electronic Journal of Differential Equations, Tome 1994 (1994) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that if $$ {\rm div}(|\nabla u|^{p-2}\nabla u)=0 $$ in $\Omega\setminus \{x\ :u(x)=0\}$, then u is a solution to the p-Laplacian in the whole $\Omega\subset R^2$.
Classification : 35J60, 35B60, 31C45, 30C62
Keywords: p-harmonic functions, p-Laplacian, removable sets
@article{EJDE_1994__1994_9_a0,
     author = {Kilpel\"ainen, Tero},
     title = {A {Rad\'o} type theorem for $p$-harmonic functions in the plane},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1994},
     number = {9},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1994__1994_9_a0/}
}
TY  - JOUR
AU  - Kilpeläinen, Tero
TI  - A Radó type theorem for $p$-harmonic functions in the plane
JO  - Electronic Journal of Differential Equations
PY  - 1994
VL  - 1994
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1994__1994_9_a0/
LA  - en
ID  - EJDE_1994__1994_9_a0
ER  - 
%0 Journal Article
%A Kilpeläinen, Tero
%T A Radó type theorem for $p$-harmonic functions in the plane
%J Electronic Journal of Differential Equations
%D 1994
%V 1994
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1994__1994_9_a0/
%G en
%F EJDE_1994__1994_9_a0
Kilpeläinen, Tero. A Radó type theorem for $p$-harmonic functions in the plane. Electronic Journal of Differential Equations, Tome 1994 (1994) no. 9. http://geodesic.mathdoc.fr/item/EJDE_1994__1994_9_a0/