On critical points of $p$ harmonic functions in the plane
Electronic Journal of Differential Equations, Tome 1994 (1994) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that if u is a p harmonic function, $1 less than p less than infty$, in the unit disk and equal to a polynomial P of positive degree on the boundary of this disk, then $ \nabla u $ has at most degP - 1 zeros in the unit disk.
Classification : 35J70, 35B05
Keywords: p-harmonic functions, p-Laplacian, quasiregular mappings
@article{EJDE_1994__1994_3_a0,
     author = {Lewis, John L.},
     title = {On critical points of $p$ harmonic functions in the plane},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1994},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1994__1994_3_a0/}
}
TY  - JOUR
AU  - Lewis, John L.
TI  - On critical points of $p$ harmonic functions in the plane
JO  - Electronic Journal of Differential Equations
PY  - 1994
VL  - 1994
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1994__1994_3_a0/
LA  - en
ID  - EJDE_1994__1994_3_a0
ER  - 
%0 Journal Article
%A Lewis, John L.
%T On critical points of $p$ harmonic functions in the plane
%J Electronic Journal of Differential Equations
%D 1994
%V 1994
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1994__1994_3_a0/
%G en
%F EJDE_1994__1994_3_a0
Lewis, John L. On critical points of $p$ harmonic functions in the plane. Electronic Journal of Differential Equations, Tome 1994 (1994) no. 3. http://geodesic.mathdoc.fr/item/EJDE_1994__1994_3_a0/