One-sided Mullins-Sekerka flow does not preserve convexity
Electronic Journal of Differential Equations, Tome 1993 (1993) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. Assuming the existence of sufficiently smooth solutions we will show that the one-sided Mullins-Sekerka flow does not preserve convexity.
Classification : 35R35, 35J05, 35B50, 53A07
Keywords: Mullins-Sekerka flow, Hele-Shaw flow, Cahn-Hilliard equation, free boundary problem, convexity, curvature
@article{EJDE_1993__1993_8_a0,
     author = {Mayer, Uwe F.},
     title = {One-sided {Mullins-Sekerka} flow does not preserve convexity},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1993},
     number = {8},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1993__1993_8_a0/}
}
TY  - JOUR
AU  - Mayer, Uwe F.
TI  - One-sided Mullins-Sekerka flow does not preserve convexity
JO  - Electronic Journal of Differential Equations
PY  - 1993
VL  - 1993
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1993__1993_8_a0/
LA  - en
ID  - EJDE_1993__1993_8_a0
ER  - 
%0 Journal Article
%A Mayer, Uwe F.
%T One-sided Mullins-Sekerka flow does not preserve convexity
%J Electronic Journal of Differential Equations
%D 1993
%V 1993
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1993__1993_8_a0/
%G en
%F EJDE_1993__1993_8_a0
Mayer, Uwe F. One-sided Mullins-Sekerka flow does not preserve convexity. Electronic Journal of Differential Equations, Tome 1993 (1993) no. 8. http://geodesic.mathdoc.fr/item/EJDE_1993__1993_8_a0/