Analysis of semilinear elliptic boundary value problem and its applications
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 259-267

Voir la notice de l'article provenant de la source Math-Net.Ru

A stationary model of the reaction-diffusion type in a three-dimensional domain is considered. Sufficient conditions for the existence and uniqueness of a weak solution to the posed boundary value problem are found. As an example, diffusion models of complex heat exchange and oxygen transfer in biological tissues are considered.
@article{DVMG_2024_24_2_a9,
     author = {A. A. Pishchikov and A. Yu. Chebotarev},
     title = {Analysis of semilinear elliptic boundary value problem and its applications},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {259--267},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a9/}
}
TY  - JOUR
AU  - A. A. Pishchikov
AU  - A. Yu. Chebotarev
TI  - Analysis of semilinear elliptic boundary value problem and its applications
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 259
EP  - 267
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a9/
LA  - ru
ID  - DVMG_2024_24_2_a9
ER  - 
%0 Journal Article
%A A. A. Pishchikov
%A A. Yu. Chebotarev
%T Analysis of semilinear elliptic boundary value problem and its applications
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 259-267
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a9/
%G ru
%F DVMG_2024_24_2_a9
A. A. Pishchikov; A. Yu. Chebotarev. Analysis of semilinear elliptic boundary value problem and its applications. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 259-267. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a9/