On a geometric theory of the realization of nonlinear controlled dynamic processes in the class of second-order bilinear models
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 200-219

Voir la notice de l'article provenant de la source Math-Net.Ru

In the development of the general theory of inverse problems of implementation of nonlinear dynamical systems on the basis of geometric constructions of the tensor product of Hilbert spaces, system-theoretic foundations are built for the analytical study of necessary and sufficient conditions for the existence of a differential implementation of a continuous infinite-dimensional dynamical system (represented by a beam of any power of controlled trajectories) in the class of bilinear nonstationary ordinary second order differential equations in a separable Hilbert space. The bilinear eight-variant structure of the differential equations of state of the infinite-dimensional dynamic system under study models the combined nonlinearity of both the trajectory itself and the speed of movement on this trajectory. Along the way, for this dynamic implementation, the topological-metric conditions for the continuity of the projectivization of the nonlinear Rayleigh - Ritz functional operator are analytically substantiated with the calculation of the fundamental group of its image. The results obtained have the potential for the development of geometric systems theory in substantiating the nonlinear analysis of coefficient-operator inverse problems of non-autonomous differential models of multilinear controllable dynamic systems of higher orders.
@article{DVMG_2024_24_2_a5,
     author = {A.V.Lakeev and Yu. E. Linke and V. A. Rusanov},
     title = {On  a geometric theory of the realization  of nonlinear controlled dynamic processes in the class of second-order bilinear models},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {200--219},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a5/}
}
TY  - JOUR
AU  - A.V.Lakeev
AU  - Yu. E. Linke
AU  - V. A. Rusanov
TI  - On  a geometric theory of the realization  of nonlinear controlled dynamic processes in the class of second-order bilinear models
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 200
EP  - 219
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a5/
LA  - ru
ID  - DVMG_2024_24_2_a5
ER  - 
%0 Journal Article
%A A.V.Lakeev
%A Yu. E. Linke
%A V. A. Rusanov
%T On  a geometric theory of the realization  of nonlinear controlled dynamic processes in the class of second-order bilinear models
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 200-219
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a5/
%G ru
%F DVMG_2024_24_2_a5
A.V.Lakeev; Yu. E. Linke; V. A. Rusanov. On  a geometric theory of the realization  of nonlinear controlled dynamic processes in the class of second-order bilinear models. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 200-219. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a5/