Inequalities for derivatives of rational functions with critical values on an interval
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 187-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multipoint distortion theorems are proved for rational functions with restrictions on their zeros, poles and critical values.
@article{DVMG_2024_24_2_a3,
     author = {V. N. Dubinin},
     title = {Inequalities for derivatives of rational functions with critical values on an interval},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {187--192},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Inequalities for derivatives of rational functions with critical values on an interval
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 187
EP  - 192
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a3/
LA  - ru
ID  - DVMG_2024_24_2_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Inequalities for derivatives of rational functions with critical values on an interval
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 187-192
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a3/
%G ru
%F DVMG_2024_24_2_a3
V. N. Dubinin. Inequalities for derivatives of rational functions with critical values on an interval. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 187-192. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a3/

[1] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, BGU, Minsk, 1979

[2] Borwein P., Erdèlyi T., “Sharp extensions of Bernstein’s inequality to rational spaces”, Mathematika, 43 (1996), 413–423 | DOI | MR

[3] Min G., “Inequalities for rational functions with prescribed poles”, Can. J. Math., 50:1 (1998), 152–166 | DOI | MR | Zbl

[4] Dubinin V. N., “O primenenii konformnykh otobrazhenii v neravenstvakh dlya ratsionalnykh funktsii”, Izv. RAN. Ser. matem., 66:2 (2002), 67–80 | DOI | MR | Zbl

[5] Lukashov A. L., “Neravenstva dlya proizvodnykh ratsionalnykh funktsii na neskolkikh otrezkakh”, Izv. RAN. Ser. matem., 68:3 (2004), 115–138 | DOI | MR | Zbl

[6] Kalmykov S., Nagy B., Totik V., “Bernstein and Markov type inequalities for rational functions”, Acta Math., 219 (2017), 21–63 | DOI | MR | Zbl

[7] Wali S. L., Shah W. M., “Some applications of Dubinin’s lemma to rational functions with prescribed poles”, J. Math. Anal. Appl., 450:1 (2017), 769–779 | DOI | MR | Zbl

[8] Kalmykov S. I., “O mnogotochechnykh teoremakh iskazheniya dlya ratsionalnykh funktsii”, Sib. matem. zhurn., 61:1 (2020), 107–119 | MR | Zbl

[9] Dubinin V. N., “O polinomakh s kriticheskimi znacheniyami na otrezke”, Matem. zametki, 78:6 (2005), 827–832 | DOI

[10] Dubinin V. N., Condenser capacities and symmetrization in geometric function theory, Birkhauser/ Springer, Basel, 2014 | MR | Zbl

[11] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR