Inverse problem with integral overdetermination for a semilinear parabolic equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 280-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analysis of the inverse problem for a nonlinear parabolic equation with integral overdetermination is presented. Nonlocal estimates of the solution of the inverse problem are obtained, its solvability in time as a whole is proved, and conditions for the uniqueness of the solution are derived.
@article{DVMG_2024_24_2_a11,
     author = {A. Yu. Chebotarev},
     title = {Inverse problem with integral overdetermination for a semilinear parabolic equation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {280--285},
     year = {2024},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a11/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
TI  - Inverse problem with integral overdetermination for a semilinear parabolic equation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 280
EP  - 285
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a11/
LA  - ru
ID  - DVMG_2024_24_2_a11
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%T Inverse problem with integral overdetermination for a semilinear parabolic equation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 280-285
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a11/
%G ru
%F DVMG_2024_24_2_a11
A. Yu. Chebotarev. Inverse problem with integral overdetermination for a semilinear parabolic equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 280-285. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a11/

[1] Kuttler C., Maslovskaya A., “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Math. Model., 93 (2021), 360–375 | DOI | MR | Zbl

[2] Maslovskaya A., Kuttler C., Chebotarev A., Kovtanyuk A., “Optimal multiplicative control of bacterial quorum sensing under external enzyme impact”, Math. Model. Nat. Phenom., 17 (2022), 29 | DOI | MR | Zbl

[3] Chebotarev A. Yu., Pinnau R., “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472 (2019), 314–327 | DOI | MR | Zbl

[4] Chebotarev A. Yu., “Obratnaya zadacha dlya uravnenii slozhnogo teploobmena s frenelevskimi usloviyami sopryazheniya”, Zh. vychisl. matem. i matem. fiz., 61:2 (2021), 303–311 | DOI | Zbl

[5] Pyatkov S. G., Rotko V. V., “Obratnye zadachi dlya nekotorykh kvazilineinykh parabolicheskikh sistem s tochechnymi usloviyami pereopredeleniya”, Matem. tr., 22:1 (2019), 178–204 | Zbl

[6] Belonogov V. A., Pyatkov S. G., “O nekotorykh klassakh obratnykh zadach opredeleniya koeffitsienta teploobmena v sloistykh sredakh”, Sibirskii matematicheskii zhurnal, 63:2 (2022), 252–271 | Zbl

[7] Pyatkov S. G., Baranchuk V. A., “Opredelenie koeffitsienta teploperedachi v matematicheskikh modelyakh teplomassoperenosa”, Matematicheskie zametki, 113:1 (2023), 90–108 | DOI | MR | Zbl

[8] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, Moskva, 1972