Thermodynamics and ground states of spin ice on a bulk hexagonal lattice
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 268-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the magnetic structure of Ising-like point dipoles located on the edges of a three-dimensional hexagonal lattice with vectors of magnetic moments oriented along the edges of the lattice. The volume lattice of spin ice is a multilayer stacked flat hexagonal lattice without shifting the layers relative to each other. Between the layers are added dipoles with magnetic moment directed perpendicularly to the layer. Such interlayer dipoles correlate the configurations in the lattice nodes and influence the magnetic ordering of the spin ice structure. The critical distance between layers at which all pairwise energies of spins adjacent to the lattice node are compensated is analytically obtained. For three cases when the distance is less than critical, equal and greater than critical, the configurations of ground states are described. The temperature behaviors of the mean energy and heat capacity are obtained by the Metropolis method for all three cases. In all cases in the system there are two temperature phases “order” and “orderless”, while for two-dimensional spin ice on a hexagonal lattice the order phase is divided into “far” and “close”. For the case when the interlayer distance is below the critical distance, the ground state is not degenerate, the system is dominated by the near order. For the case when the interlayer distance is above the critical distance, the multiplicity of degeneracy of the ground state depends on the number of spins, the ordering of the system is also given by the nearest dipole-dipole interactions. When the interlayer distance is equal to the critical distance, the ground state is degenerate 6 times, the near interactions are fully compensated, and the long-range order dominates.
@article{DVMG_2024_24_2_a10,
     author = {V. S. Strongin and \`E. A. Lobanova and M. D. Cherkasov and I. V. Trefilov and P. A. Ovchinnikov and Yu. A. Shevchenko},
     title = {Thermodynamics and ground states of spin ice on a bulk hexagonal lattice},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {268--279},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a10/}
}
TY  - JOUR
AU  - V. S. Strongin
AU  - È. A. Lobanova
AU  - M. D. Cherkasov
AU  - I. V. Trefilov
AU  - P. A. Ovchinnikov
AU  - Yu. A. Shevchenko
TI  - Thermodynamics and ground states of spin ice on a bulk hexagonal lattice
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 268
EP  - 279
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a10/
LA  - ru
ID  - DVMG_2024_24_2_a10
ER  - 
%0 Journal Article
%A V. S. Strongin
%A È. A. Lobanova
%A M. D. Cherkasov
%A I. V. Trefilov
%A P. A. Ovchinnikov
%A Yu. A. Shevchenko
%T Thermodynamics and ground states of spin ice on a bulk hexagonal lattice
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 268-279
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a10/
%G ru
%F DVMG_2024_24_2_a10
V. S. Strongin; È. A. Lobanova; M. D. Cherkasov; I. V. Trefilov; P. A. Ovchinnikov; Yu. A. Shevchenko. Thermodynamics and ground states of spin ice on a bulk hexagonal lattice. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 268-279. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a10/

[1] Skjærvø S. H., Marrows C. H., Stamps R. L., Heyderman L. J., “Advances in artificial spin ice”, Nature Reviews Physics, 2:1, November (2019), 13–28

[2] Shevchenko Y., Makarov A., Nefedev K., “Effect of long-and short-range interactions on the thermodynamics of dipolar spin ice”, Physics Letters A, 381:5 (2017), 428–434 | DOI

[3] Strongin V. S., Ovchinnikov P. A., Lobanova E. A., Trefilov I. V., “Razbavlennaya model kubicheskogo spinovogo lda”, Dalnevost. matem. zhurn., 24:1 (2024), 120–132 | MR | Zbl

[4] Makarova K., Strongin V., Titovets I., Syrov A., “Low-energy states, ground states, and variable frustrations of the finite-size dipolar Cairo lattices”, Physical Review E, 103:4, Apr (2021), 042129

[5] Shevchenko Y., Strongin V., Kapitan V., Soldatov K., “Order and disorder, crossovers, and phase transitions in dipolar artificial spin ice on the Cairo lattice”, Physical Review E, 106:6 (2022), 064105 | DOI

[6] Hofhuis K., Skjærvø S. H., Parchenko S., Arava H., “Real-space imaging of phase transitions in bridged artificial kagome spin ice”, Nature Physics, 18:6, April (2022), 699–705

[7] Chern G.-W., Mellado P., Tchernyshyov O., “Two-stage ordering of spins in dipolar spin ice on the kagome lattice”, Physical review letters, 106:20, May (2011), 207202

[8] Chern G.-W., Tchernyshyov O., “Magnetic charge and ordering in kagome spin ice”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370:1981 (2012), 5718–5737 | MR | Zbl

[9] Möller G., Moessner R., “Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays”, Physical Review B, 80:14, Oct (2009), 140409(R)

[10] Makarov A. G., Makarova K., Shevchenko Y. A., Andriushchenko P. D., “On the numerical calculation of frustrations in the Ising model”, JETP Letters, 110:10 (2019), 702–706

[11] Kapitan V. Yu., Vasilev E. V., Shevchenko Yu. A., Perzhu A. V., “Termodinamicheskie svoistva sistem spinov Geizenberga na kvadratnoi reshetke s vzaimodeistviem Dzyaloshinskogo–Moriya”, Dalnevostochnyi matematicheskii zhurnal, 20:1 (2020), 63–73 | MR | Zbl

[12] Arnalds U. B., Farhan A., Chopdekar R. V., Kapaklis V., “Thermalized ground state of artificial kagome spin ice building blocks”, Applied Physics Letters, 101:11 (2012), 112404

[13] Wang 1. R., Nisoli C., Freitas R., Li J., “Artificial ‘spin ice’in a geometrically frustrated lattice of nanoscale ferromagnetic islands”, Nature, 439:7074 (2006), 303–306 | DOI

[14] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21:6 (1953), 1087–1092 | DOI | Zbl

[15] Hastings W. K., “Monte Carlo sampling methods using Markov chains and their applications”, Biometrika, 57:1 (1970), 97–109 | DOI | MR | Zbl

[16] Makarova K., Makarov A., Strongin V., Titovets I., “Canonical Monte Carlo multispin cluster method”, Journal of Computational and Applied Mathematics, 427 (2023), 115153 | DOI | MR | Zbl

[17] Makarova X. V., Makarov A. G., Padalko M. A., Strongin V. S., “Multispin Monte Carlo Method”, Dal'nevostochnyi Matematicheskii Zhurnal, 20:2 (2020), 212–220 | DOI | MR | Zbl

[18] Stoner E. C., Wohlfarth E., “A mechanism of magnetic hysteresis in heterogeneous alloys”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240:826 (1948), 599–642