Identification of heat sources in a complex heat transfer model
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 170-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of recovering the intensities of heat sources with given volume densities and known values of average temperature is considered within the complex heat transfer model. An algorithm for the numerical solution of this problem is proposed. The conditions for the uniqueness of the solution are obtained.
@article{DVMG_2024_24_2_a1,
     author = {G. V. Grenkin},
     title = {Identification of heat sources in a complex heat transfer model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {170--177},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a1/}
}
TY  - JOUR
AU  - G. V. Grenkin
TI  - Identification of heat sources in a complex heat transfer model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 170
EP  - 177
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a1/
LA  - ru
ID  - DVMG_2024_24_2_a1
ER  - 
%0 Journal Article
%A G. V. Grenkin
%T Identification of heat sources in a complex heat transfer model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 170-177
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a1/
%G ru
%F DVMG_2024_24_2_a1
G. V. Grenkin. Identification of heat sources in a complex heat transfer model. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 170-177. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a1/

[1] Chebotarev A. Yu., Grenkin G. V., Kovtanyuk A. E., Botkin N. D., “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744 | DOI | MR | Zbl

[2] Chebotarev A. Yu., “Obratnaya zadacha dlya uravnenii slozhnogo teploobmena c frenelevskimi usloviyami sopryazheniya”, Zh. vychisl. matem. i matem. fiz., 61:2 (2021), 303–311 | DOI | Zbl

[3] Grenkin G. V., “Edinstvennost resheniya obratnoi zadachi dlya modeli slozhnogo teploobmena”, Sib. elektron. matem. izv., 21:1 (2024), 98–104 | MR | Zbl

[4] Chebotarev A. Yu., Pinnau R., “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472:1 (2019), 314–327 | DOI | MR | Zbl

[5] Kovtanyuk A., Chebotarev A., Turova V., Sidorenko I., “An inverse problem for equations of cerebral oxygen transport”, Appl. Math. Comput., 402 (2021), 126154 | MR | Zbl

[6] Kovtanyuk A., Chebotarev A., Turova V., Sidorenko I., “Inverse problem for a linearized model of oxygen transport in brain”, 2020 Days on Diffraction (DD), 2020, 44–49

[7] Kovtanyuk A., Chebotarev A., Turova V., Sidorenko I., “Non-stationary model of cerebral oxygen transport with unknown sources”, Mathematics, 9:8 (2021), 910 | DOI

[8] Grenkin G. V., “Upravlenie nagrevom oblasti v ramkakh modeli slozhnogo teploobmena”, Informatika i sistemy upravleniya, 2024, no. 1 (79), 121–125 | MR

[9] Grenkin G. V., “Chislennoe reshenie obratnoi zadachi vosstanovleniya teplovykh istochnikov”, Territoriya novykh vozmozhnostei. Vestnik Vladivostokskogo gosudarstvennogo universiteta, 16:2 (2024), 161–170 | MR

[10] Urinov A. K., Azizov M. S., “Boundary value problems for a fourth order partial differential equation with an unknown right-hand part”, Lobachevskii J. Math., 42 (2021), 632–640 | DOI | MR | Zbl

[11] Baranchuk V. A., Pyatkov S. G., “On some inverse problems of recovering sources in stationary convection-diffusion models”, Lobachevskii J. Math., 44:3 (2023), 1111 | DOI | MR | Zbl

[12] Kovtanyuk A., Chebotarev A., Astrakhantseva A., “Inverse extremum problem for a model of endovenous laser ablation”, J Inverse Ill Posed Probl., 29:3 (2021), 467–476 | DOI | MR | Zbl

[13] Chebotarev A. Yu., Kovtanyuk A. E., Grenkin G. V., Botkin N. D., “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Appl. Math. Comput., 289 (2016), 371–380 | MR | Zbl