On the associated spaces of the Hardy space
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 96-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Characterizations of the associated spaces and second associated spaces of the Hardy space on $\mathbb{R}^n$ are given. Some results on the associated spaces of the ${\mathrm{BMO}(\mathbb{R}^{n})}$ space are proved also.
@article{DVMG_2024_24_1_a8,
     author = {D. V. Prokhorov},
     title = {On the associated spaces of the {Hardy} space},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {96--106},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a8/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - On the associated spaces of the Hardy space
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 96
EP  - 106
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a8/
LA  - ru
ID  - DVMG_2024_24_1_a8
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T On the associated spaces of the Hardy space
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 96-106
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a8/
%G ru
%F DVMG_2024_24_1_a8
D. V. Prokhorov. On the associated spaces of the Hardy space. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 96-106. http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a8/

[1] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993 | MR | Zbl

[2] Bennett C., Sharpley R., Interpolation of operators, Academic Press, Inc., Boston, 1988 | MR | Zbl

[3] Prokhorov D. V., “On the dual spaces for weighted altered Cesàro and Copson spaces”, J. Math. Anal. Appl., 514:2 (2022), 126325 | DOI | MR | Zbl

[4] Prokhorov D. V., Stepanov V. D., Ushakova E. P., “Kharakterizatsiya funktsionalnykh prostranstv, assotsiirovannykh s vesovymi prostranstvami Soboleva pervogo poryadka na deistvitelnoi osi”, UMN, 74:6(450) (2019), 119–158 | DOI | MR | Zbl

[5] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[6] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83 (1977), 569–645 | DOI | MR | Zbl

[7] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR