The best approximation of functions analytic in the unit circle in weighted Bergman space
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 55-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtained the exact inequalities between the best approximations of analytical in the unit circle functions and generalized modulus of continuity of the $m$-th order in the weighted Bergman space $B_{2,\gamma}.$ The exact values of $n$-widths of some classes of functions in a weighted Bergman space are calculated.
@article{DVMG_2024_24_1_a5,
     author = {M. R. Langarshoev and A. G. Aydarmamadov},
     title = {The best approximation of functions analytic in the unit circle in weighted {Bergman} space},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a5/}
}
TY  - JOUR
AU  - M. R. Langarshoev
AU  - A. G. Aydarmamadov
TI  - The best approximation of functions analytic in the unit circle in weighted Bergman space
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 55
EP  - 66
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a5/
LA  - ru
ID  - DVMG_2024_24_1_a5
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%A A. G. Aydarmamadov
%T The best approximation of functions analytic in the unit circle in weighted Bergman space
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 55-66
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a5/
%G ru
%F DVMG_2024_24_1_a5
M. R. Langarshoev; A. G. Aydarmamadov. The best approximation of functions analytic in the unit circle in weighted Bergman space. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 55-66. http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a5/