An iterative algorithm for solving an initial-boundary value problem for a quasi-linear model of complex heat transfer
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 240-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial-boundary value problem for a system of quasilinear equations of radiative-conductive heat transfer, simulating the process of endovenous laser ablation, is considered. An algorithm for finding its solution is proposed and its convergence is proved. The efficiency of the algorithm is illustrated by numerical experiments.
@article{DVMG_2023_23_2_a8,
     author = {N. M. Park and A. E. Kovtanyuk},
     title = {An iterative algorithm for solving an initial-boundary value problem for a quasi-linear model of complex heat transfer},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {240--245},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a8/}
}
TY  - JOUR
AU  - N. M. Park
AU  - A. E. Kovtanyuk
TI  - An iterative algorithm for solving an initial-boundary value problem for a quasi-linear model of complex heat transfer
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 240
EP  - 245
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a8/
LA  - ru
ID  - DVMG_2023_23_2_a8
ER  - 
%0 Journal Article
%A N. M. Park
%A A. E. Kovtanyuk
%T An iterative algorithm for solving an initial-boundary value problem for a quasi-linear model of complex heat transfer
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 240-245
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a8/
%G ru
%F DVMG_2023_23_2_a8
N. M. Park; A. E. Kovtanyuk. An iterative algorithm for solving an initial-boundary value problem for a quasi-linear model of complex heat transfer. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 240-245. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a8/

[1] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions”, Commun. Nonlinear Sci. Num. Simulat., 57 (2018), 290–298 | DOI | MR | Zbl

[2] A. Yu. Chebotarev, “Inhomogeneous problem for quasi-stationary equations of complex heat transfer with reflection and refraction conditions”, Comput. Math. Math. Phys., 63 (2023), 441–449 | DOI | MR | Zbl

[3] A. A. Poluektova, W. S. J. Malskat , M. J. C.van Gemert, M. E. Vuylsteke, C. M. A. Bruijninckx, H. A. M. Neumann, C. W. M. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling”, Lasers Med. Sci., 29 (2014), 441–452 | DOI