On one extrapolation algorithm for improving the quality of sonar images of the seabed
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 211-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

The issues of improving the quality of sonar images of the seabed according to measurements of a side-view sonar equipped with several antennas with different widths of the radiation pattern are considered. In the framework of a mathematical model describing the process of pulse sensing in a half-space with diffuse reflection conditions at the boundary, an extrapolation method for suppressing the blurriness of images of the bottom scattering coefficient is proposed. The results of numerical simulations are presented, and the limitations and prospects of applying the extrapolation approach are indicated.
@article{DVMG_2023_23_2_a6,
     author = {{\CYRE}. {\CYRO}. Kovalenko and I. V. Prokhorov},
     title = {On one extrapolation algorithm for improving the quality of sonar images of the seabed},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {211--221},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a6/}
}
TY  - JOUR
AU  - Е. О. Kovalenko
AU  - I. V. Prokhorov
TI  - On one extrapolation algorithm for improving the quality of sonar images of the seabed
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 211
EP  - 221
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a6/
LA  - ru
ID  - DVMG_2023_23_2_a6
ER  - 
%0 Journal Article
%A Е. О. Kovalenko
%A I. V. Prokhorov
%T On one extrapolation algorithm for improving the quality of sonar images of the seabed
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 211-221
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a6/
%G ru
%F DVMG_2023_23_2_a6
Е. О. Kovalenko; I. V. Prokhorov. On one extrapolation algorithm for improving the quality of sonar images of the seabed. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 211-221. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a6/

[1] I. V. Prokhorov, A. A. Suschenko, “Issledovanie zadachi akusticheskogo zondirovaniya morskogo dna metodami teorii perenosa izlucheniya”, Akusticheskii zhurnal, 61:3 (2015), 400–408 | DOI

[2] E. O. Kovalenko, I. V. Prokhorov, “Opredelenie koeffitsienta donnogo rasseyaniya pri mnogoluchevom zondirovanii okeana”, Dalnevost. matem. zhurn., 19:2 (2019), 206–222 | MR | Zbl

[3] E. O. Kovalenko, I. V. Prokhorov, “Lokalizatsiya linii razryva koeffitsienta donnogo rasseyaniya po dannym akusticheskogo zondirovaniya”, Sib. zhurn. industr. matem., 25:1 (2022), 67–79 | Zbl

[4] R. C. Gonzales, R. E. Woods, Digital image processing, MA Addison-Wesley, Boston, 2001

[5] S. I. Sai, A. G. Shoberg, I. N. Burdinskii, L. A. Naumov, V. V. Zolotarev, “Algoritmy analiza i tsifrovoi obrabotki gidrolokatsionnykh izobrazhenii”, Podvodnye issledovaniya i robototekhnika, 2008, no. 2(6), 32–40

[6] A. S. Krylov, A. V. Nasonov, O. S. Ushmaev, “Video super-resolution with fast deconvolution”, Pattern Recognition and Image Analysis, 19:3 (2009), 497–500 | DOI

[7] A. V. Nasonov, A. S. Krylov, O. S. Ushmaev, “Primenenie metoda superrazresheniya dlya biometricheskikh zadach raspoznavaniya lits v videopotoke”, Sistemy vysokoi dostupnosti, 2009, no. 1, 26–34

[8] G. Griffiths, Technology and Applications of Autonomous Underwater Vehicles, CRC Press, London, 2002

[9] Yu. V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknarya, E. V. Tutynin, “Puti sovershenstvovaniya gidroakusticheskikh tekhnologii obsledovaniya morskogo dna s ispolzovaniem avtonomnykh neobitaemykh podvodnykh apparatov”, Podvodnye issledovaniya i robototekhnika, 8:2 (2009), 4–15

[10] A. V. Vagin, A. S. Vorotyntseva, “Teoreticheskoe i eksperimentalnoe obosnovanie printsipov postroeniya gidrolokatorov obzora donnoi obstanovki”, Izv. SPbGETU «LETI», 15:5/6 (2022), 5–14

[11] A. L. Ageev, G. A. Igumnov, V. B. Kostousov, I. B. Agafonov, V. V. Zolotarev, E. A. Madison, “Sintezirovanie apertury mnogokanalnogo gidrolokatora bokovogo obzora s kompensatsiei traektornykh nestabilnostei”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 2013, no. 3 (140), 140–148

[12] V. B. Kostousov, A. V. Kostousov, “Modelirovanie GBO s sintezirovannoi aperturoi”, Podvodnye issledovaniya i robototekhnika, 2008, no. 2 (6), 16–29

[13] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978 | MR

[14] I. V. Prokhorov, A. A. Suschenko, “Zadacha Koshi dlya uravneniya perenosa izlucheniya v neogranichennoi srede”, Dalnevostochnyi matematicheskii zhurnal, 18:1 (2018), 101—111 | MR | Zbl

[15] A. A. Amosov, “Initial-Boundary Value Problem for the Non-stationary Radiative Transfer Equation with Diffuse Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 235:2 (2018), 117–137 | DOI | MR | Zbl

[16] A. A. Amosov, “Nonstationary radiation transfer through a multilayered medium with reflection and refraction conditions”, Mathematical Methods in the Applied Sciences, 41:17 (2018), 8115–8135 | DOI | MR | Zbl

[17] I. V. Prokhorov, “Zadacha Koshi dlya uravneniya perenosa izlucheniya s frenelevskimi i lambertovskimi usloviyami sopryazheniya”, Matem. zametki, 105:1 (2019), 95–107 | DOI | MR | Zbl

[18] M. A. Penkin, A. S. Krylov, A. V. Khvostikov, “Gibridnyi metod podavleniya ostsillyatsii Gibbsa na izobrazheniyakh magnitno-rezonansnoi tomografii”, Programmirovanie, 2021, no. 3, 64–72 | DOI | MR