An asymptotic formula for the capacity of a condenser when all its plates are degenerate
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 184-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is given for the capacity of a generalized condenser with variable potential levels, the domain of the condenser and the degeneracy of all its plates.
@article{DVMG_2023_23_2_a4,
     author = {V. N. Dubinin},
     title = {An asymptotic formula for the capacity of a condenser when all its plates are degenerate},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {184--189},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - An asymptotic formula for the capacity of a condenser when all its plates are degenerate
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 184
EP  - 189
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a4/
LA  - ru
ID  - DVMG_2023_23_2_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T An asymptotic formula for the capacity of a condenser when all its plates are degenerate
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 184-189
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a4/
%G ru
%F DVMG_2023_23_2_a4
V. N. Dubinin. An asymptotic formula for the capacity of a condenser when all its plates are degenerate. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 184-189. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a4/

[1] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zap. nauchn. sem. POMI, 237, 1997, 56–73 | Zbl

[2] D. Karp, “Capacity of a condenser whose plates are circular arcs”, Complex Variables, Theory and Application, 50:2 (2005), 103–122 | DOI | MR | Zbl

[3] D. Karp, E. Prilepkina, “Reduced modules with free boundary and its applications”, Ann. Acad. Sci. Fenn. Math., 34:2 (2009), 353–378 | MR | Zbl

[4] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283:11 (2010), 1589–1602 | DOI | MR | Zbl

[5] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel, 2014 | MR | Zbl

[6] K. A. Gulyaeva, S. I. Kalmykov, E. G. Prilepkina, “Extremal decomposition problems in the Euclidean space”, Int. J. Math. Anal. (Ruse), 9 (2015), 2763–2773 | DOI

[7] S. I. Kalmykov, E. G. Prilepkina, “O p-garmonicheskom radiuse Robena v evklidovom prostranstve”, Zap. nauchn. sem. POMI, 449, 2016, 196–213

[8] V. N. Dubinin, E. G. Prilepkina, “Optimal Green energy points on the circles in d-space”, Journal of Mathematical Analysis and Applications, 499:2 (2021), Article 125055 | DOI | MR | Zbl

[9] E. G.Prilepkina, A. S. Afanaseva-Grigoreva, “Optimal discrete Neumann energy in a ball and an annulus”, Siberian Electronic Mathematical Reports, 19:1 (2022), 109–119 | MR | Zbl

[10] S. R. Nasyrov, V. Z. Nguen, “Asimptotika vneshnego konformnogo modulya chetyrekhstoronnika pri ego rastyazhenii”, Izv. vuzov. Matem., 5 (2023), 89–95

[11] F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Ekstremalnye problemy v geometricheskoi teorii funktsii”, Uspekhi matematicheskikh nauk, 78:2(470) (2023), 3–70 | DOI | MR

[12] Laura Abatangelo, Corentin L'ena, and Paolo Musolino, Asymptotic behavior of generalized capacities with applications to eigenvalue perturbations: the higher dimensional case, 2023, arXiv: 2305.06953 | MR

[13] V. N. Dubinin, V. Yu. Kim, “O kondensatorakh s peremennymi plastinami, urovnyami potentsiala i oblastyu zadaniya”, Dalnevost. matem. zhurn., 22:1 (2022), 55–60 | MR | Zbl