Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2023_23_2_a2, author = {A. I. Gudimenko and A. V. Lihosherstov}, title = {The problem of vibrations in a harmonic chain with damping and anti-damping on the boundaries}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {161--177}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a2/} }
TY - JOUR AU - A. I. Gudimenko AU - A. V. Lihosherstov TI - The problem of vibrations in a harmonic chain with damping and anti-damping on the boundaries JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2023 SP - 161 EP - 177 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a2/ LA - ru ID - DVMG_2023_23_2_a2 ER -
%0 Journal Article %A A. I. Gudimenko %A A. V. Lihosherstov %T The problem of vibrations in a harmonic chain with damping and anti-damping on the boundaries %J Dalʹnevostočnyj matematičeskij žurnal %D 2023 %P 161-177 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a2/ %G ru %F DVMG_2023_23_2_a2
A. I. Gudimenko; A. V. Lihosherstov. The problem of vibrations in a harmonic chain with damping and anti-damping on the boundaries. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 161-177. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a2/
[1] A. Maradudin, E. Montroll, and G. Weiss, Theory of lattice dynamics in the harmonic approximation, Academic Press, New York and London, 1963 | MR
[2] Thermal transport in low dimensions, Lecture Notes in Physics, 921, ed. S. Lepri, Springer International Publishing, 2016 | MR
[3] A. M. Krivtsov, “Rasprostranenie tepla v beskonechnom odnomernom garmonichekom kristalle”, Doklady akademii nauk, 464:2 (2015), 162–166 | DOI | MR
[4] O. S. Loboda, E. A. Podolskaya, D. V. Tsvetkov, and A. M. Krivtsov , “On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals”, Continuum Mech. Thermodyn., 33 (2021), 485–496 | DOI | MR
[5] M. A. Guzev, “Zakon Fure dlya odnomernogo kristalla”, Dalnevost. matem. zhurn., 20:1 (2018), 34–38 | MR
[6] V. V. Migulin, V. I. Medvedev, E. R. Mustel, V. N. Parygin, Osnovy teorii kolebanii, Nauka, M., 1978
[7] E. Schrödinger, “Zur Dynamik elastisch gekoppelter Punktsysteme”, Annalen der Physik, 44 (1914), 916–934 | DOI
[8] F. R. Gantmakher, M. G. Krein, Oscillation matrices and kernels and small vibrations of mechanical systems, AMS Chelsea Publishing, 2002 | MR | Zbl
[9] L. Halpern, “Absorbing Boundary Conditions for the Discretization Schemes of the One-Dimensional Wave Equation”, Mathematics of Computation, 38:158 (1982), 415–429 | DOI | MR | Zbl
[10] I. Alonso-Mallo and A. M. Portillo, “A proof of the well posedness of discretized wave equation with an absorbing boundary condition”, J. Numer. Math., 22:4 (2014), 271–287 | DOI | MR
[11] E. Takizawa and K. Kobayasi, “Heat Flow in a System of Coupled Harmonic Oscillators”, Chinese J. Phys., 1:2 (1963), 59–73
[12] K. Kobayasi and E. Takizawa, “Effect of a Light Isotopic Impurity on the Energy Flow in a System of One-Dimensional Coupled Harmonic Oscillators”, Chinese J. Phys., 2:2 (1964), 68–79
[13] A. I. Gudimenko, “Teplovoi potok v odnomernoi polubeskonechnoi garmonicheskoi reshetke s pogloschayuschei granitsei”, Dalnevost. matem. zhurn., 20:1 (2020), 38–50 | MR
[14] J. L. van Hemmen, Physics Reports, 65:2 (1980), 43–149 | DOI | MR
[15] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Izd. 6, URSS, 2017 | MR
[16] C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34, Springer, 2006 | MR | Zbl
[17] G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, XXX, AMS, Providence, RI, 2011 | MR
[18] M. V. Fedoryuk, Obyknovennye differentsialnye uravneniya, Nauka, M., 1985
[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, NY, 2007 | MR | Zbl
[20] S. Elaydi, An Introduction to Difference Equations, Springer, 2005 | MR | Zbl
[21] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1944 | MR | Zbl