Optimal multiplicative control of a semilinear parabolic equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 270-277
Voir la notice de l'article provenant de la source Math-Net.Ru
An analysis of optimal control problems for a nonlinear parabolic initial-boundary value problem that models the dynamics of the collective behavior of a bacterial community is presented.
Estimates for the solution of the initial-boundary value problem are obtained, the solvability of control problems is proved, and optimality conditions are derived. The weak «bang-bang» principle is set for the problem with the final observation.
@article{DVMG_2023_23_2_a12,
author = {A. Yu. Chebotarev},
title = {Optimal multiplicative control of a semilinear parabolic equation},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {270--277},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a12/}
}
A. Yu. Chebotarev. Optimal multiplicative control of a semilinear parabolic equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 270-277. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a12/