Theoretical analysis of magnetic cloaking problems using elliptical metamaterials
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 152-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conjugation problem and control problems for the 3D model of magnetostatics are considered. These problems are related to the design of three-dimensional magnetic cloaking shells. An elliptical metamaterial is chosen as a cloaking medium that fills a region which is topologically equivalent to a spherical layer. The solvability of boundary and control problems is proved, an optimality system is derived that describes the necessary conditions for an extremum, some properties of optimal solutions are established.
@article{DVMG_2023_23_2_a1,
     author = {G. V. Alekseev},
     title = {Theoretical analysis of magnetic cloaking problems using elliptical metamaterials},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {152--160},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a1/}
}
TY  - JOUR
AU  - G. V. Alekseev
TI  - Theoretical analysis of magnetic cloaking problems using elliptical metamaterials
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 152
EP  - 160
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a1/
LA  - ru
ID  - DVMG_2023_23_2_a1
ER  - 
%0 Journal Article
%A G. V. Alekseev
%T Theoretical analysis of magnetic cloaking problems using elliptical metamaterials
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 152-160
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a1/
%G ru
%F DVMG_2023_23_2_a1
G. V. Alekseev. Theoretical analysis of magnetic cloaking problems using elliptical metamaterials. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 152-160. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a1/

[1] L. S. Dolin, “O vozmozhnosti sopostavleniya trekhmernykh elektromagnitnykh sistem s neodnorodnym anizotropnym zapolneniem”, Izv. vuzov. Radiofizika, 4 (1961), 964–967

[2] J. B. Pendry, D. Shurig, D. R. Smith, “Controlling electromagnetic fields”, Science, 312 (2006), 1780–1782 | DOI | MR | Zbl

[3] U. Leonhardt, “Optical conformal mapping”, Science, 312 (2006), 1777–1780 | DOI | MR | Zbl

[4] B. Wood, J. B. Pendry, “Metamaterials at zero frequency”, J. Phys.: Condens. Matter., 19 (2007), 076208 | DOI

[5] A. Sanchez, C. Navau, J. Prat-Camps, D.-X. Chen, “Antimagnets: controlling magnetic fields with superconductormetamaterial hybrids”, New J. Phys., 13 (2011), 093034 | DOI

[6] F. Gömöry, M. Ŝolovyov, J. Souc, C. Navau, J. Prat-Camps, A. Sanchez, “Experimental realization of a magnetic cloak”, Science, 335 (2012), 1466–1468 | DOI

[7] G. V. Alekseev, Problema nevidimosti v akustike, optike i teploperenose, Dalnauka, V., 2016

[8] G. V. Alekseev, V. A. Levin, D. A. Tereshko, Analiz i optimizatsiya v zadachakh dizaina ustroistv nevidimosti materialnykh tel, FIZMATLIT, M., 2021

[9] G. V. Alekseev, Yu. E. Spivak, “Teoreticheskii analiz zadachi magnitnoi maskirovki na osnove optimizatsionnogo metoda”, Differentsialnye uravneniya, 54:9 (2018), 1155–1166 | DOI | Zbl

[10] G. V. Alekseev, Yu. E. Spivak, “Chislennyi analiz dvumernykh zadach magnitnoi maskirovki na osnove optimizatsionnogo metoda”, Differentsialnye uravneniya, 56:9 (2020), 1252–1262 | DOI | Zbl

[11] G. V. Alekseev, Yu. E. Spivak, “Chislennyi analiz trekhmernykh zadach magnitnoi maskirovki na osnove optimizatsionnogo metoda”, Zhurn. vychislit. matematiki i mat. fiziki, 61:2 (2021), 224–238 | DOI | MR | Zbl

[12] G. V. Alekseev, A. V. Lobanov, “Optimization method for solving cloaking and shielding problems for a 3D model of electrostatics”, Mathematics, 11:6 (2023), 1395 | DOI

[13] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological transitions in metamaterials”, Science, 336:6078 (2012), 205–209 | DOI | MR | Zbl

[14] P. Shekhar, J. Atkinson, Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications”, Nano Convergence, 1:14 (2014), 1–17 | MR

[15] J. M. Melenk, “Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions”, Math. Comp., 79 (2010), 1871–1914 | DOI | MR | Zbl